

SIL Calculations

Practical Guidance in the used of IEC 61508-6:2010

DISCLAIMER: Whilst every effort has been made to ensure the accuracy of the information contained in this document neither The 61508 Association nor its members will assume any liability for any use made thereof.

https://61508.org / info@61508.org

Date: 07/06/2024 / Slide 1

Our Members

https://61508.org / info@61508.org

Date: 07/06/2024 / Slide 2

Who Are We?

- We are a cross-industry group of organisations with a common interest in functional safety, particularly in applying IEC 61508 and related standards (e.g., IEC 61511, IEC 62061) correctly in order to demonstrate compliance and improve safety for all.
- Our members include end-users (from many industry sectors), EPC companies, systems integrators, product manufacturers, consultants and certifiers. We also have active relationships with related industry organisations and safety regulators who often attend our meetings.
- We develop and publish many useful and informative guides and assessment tools which are available to all (not just our members) and are free of charge.

In This Workshop:

- We will look at the simplified formulas for the Reliability Block Diagram methodology given in IEC 61508:2010, Part 6, Annex B.
- We will then use the method to calculate the average Probability of Failure on Demand for a typical low demand example SIF from the process industry.
- We will consider the effects that imperfect testing and common cause factors have on the results of the calculations.

You have an understanding of why we quantify random hardware failures in Functional Safety.

• You understand the difference between modes of operation.

 For the purpose of this workshop we will focus on Demand Mode SIFs since this is the most common mode of operation in the Process Industry sector

Mode of Operation

In Demand Mode the target failure measure is in the following format:

- Uses average Probability of Failure on Demand (PFDavg)
- Takes credit for proof testing
- Takes credit for diagnostics

	Demand Mode of Operation						
SIL	Average probability of failure on demand	Target risk reduction					
4	≥10 ⁻⁵ to <10 ⁻⁴	>10,000 to ≤100,000					
3	≥10 ⁻⁴ to <10 ⁻³	>1,000 to ≤10,000					
2	≥10 ⁻³ to <10 ⁻²	>100 to ≤1,000					
1	≥10 ⁻² to <10 ⁻¹	>10 to ≤100					

Quantifying Random Hardware Failures

IEC 61508-6:2010 Annex B:

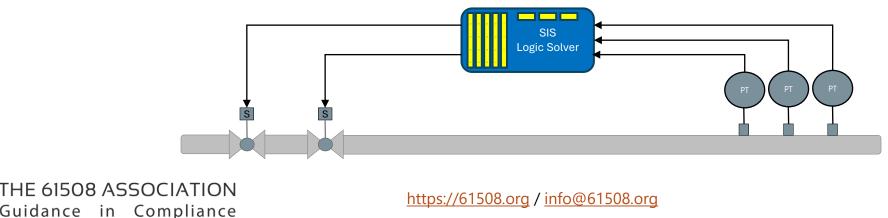
Examples of Technique for Evaluating Probabilities of Hardware Failure

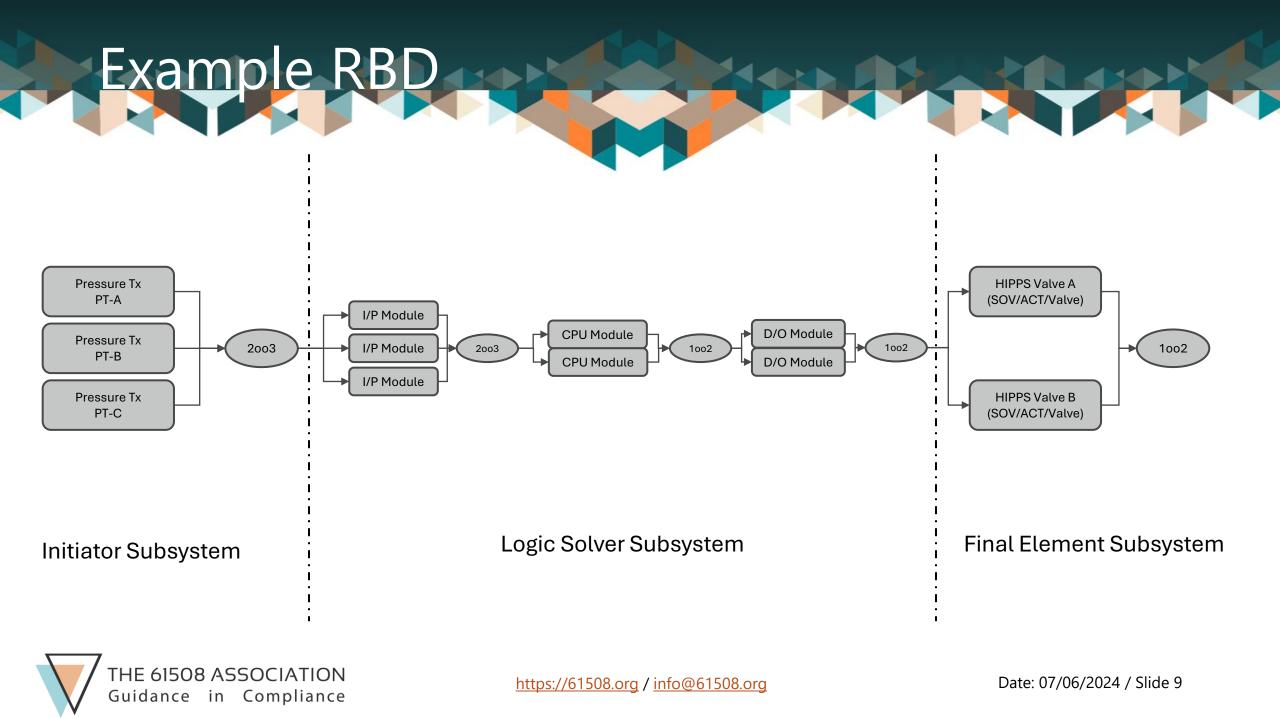
Simplified Reliability Block Diagram

Fault Tree

State / Transitions approach (Markov / Petri net)

The methodology will depend on complexity


More often than not, we can use the Reliability Block Diagram approach using simplified formulas to approximate PFD_{avg}



Example Using RBD

Using an example SIF we will go through the RBD methodology from IEC 61508-6 Annex B to calculate the average Probability of Failure on Demand.

- 1. Split the SIF into three subsystems (Initiators, Logic Solver, Final Elements)
- 2. Produce a simplified RBD for each subsystem complete with voting architectures
- 3. Apply the simplified formulas from IEC 61508-6:2010 Annex B to calculate the PFDavg of each subsystem
- 4. Add each subsystem PFDavg together to arrive at the total SIF PFDavg

Simplified Formulas

The following formula are from IEC 61508-6:2010 Annex B.3.2.

For each channel of a subsystem we need to calculate the 'channel equivalent mean down time' (t_{CE})

$$t_{CE} = \frac{\lambda_{DU}}{\lambda_{D}} \left(\frac{T_{1}}{2} + MRT \right) + \frac{\lambda_{DD}}{\lambda_{D}} MTTR$$

For a subsystem made up of redundant channels, we need to calculate the 'system equivalent mean down time' (t_{GE})

$$t_{GE} = \frac{\lambda_{DU}}{\lambda_{D}} \left(\frac{T_{1}}{3} + MRT \right) + \frac{\lambda_{DD}}{\lambda_{D}} MTTR$$

Also a few other channel downtime formulas to consider for other architectures

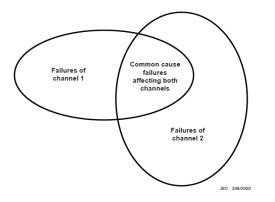
Simplified Formulas

We then apply the channel downtime to the formula below to determine the subsystem $\mathsf{PFD}_{\mathsf{avg}}$

Subsystem Architecture	IEC 61508-6:2010 Formula
1001	$PFD = (\lambda_{DU} + \lambda_{DD})t_{CE}$
2002	$PFD = 2(\lambda_{DU} + \lambda_{DD})t_{CE}$
1002	$PFD = 2\left((1-\beta_D)\lambda_{DU} + (1-\beta)\lambda_{DU}\right)^2 tCE tGE + \beta_D \lambda_{DD} MTTR + \beta \lambda_{DU}\left(\frac{T_1}{2} + MRT\right)$
2003	$PFD = 6\left((1-\beta_D)\lambda_{DU} + (1-\beta)\lambda_{DU}\right)^2 tCE tGE + \beta_D \lambda_{DD} MTTR + \beta \lambda_{DU}\left(\frac{T_1}{2} + MRT\right)$

PFD	Probability of Failure on Demand
λDU	Dangerous Undetected failure rate
λ_{DD}	Dangerous Detected failure rate
t _{CE}	Channel equivalent mean down time
t _{GE}	System equivalent mean down time
β	Common Cause Failure fraction
β_D	Common Cause Failure fraction for detected failures
MTTR	Mean Time To Restoration
MRT	Mean Repair Time
T ₁	Proof Test Interval

PFD Calculation


PFD _{avg} Calculation Results								
		Param	neters		Architecture			
Element	I MITR I '		β _D factor (CCF)	PFD _{Avg}				
Initiator Subsystem								
Pressure Transmitter	1 year	8 hours	10%	10%	2003 2.36E-04			
	Initia	ator Subsys	tem PFD _{avg}	Subtotal:	2.36E-04			
		Logic Solver	Subsystem					
A I/P	1 year	8 hours	2%	1%	2003 6.97E-07			
CPU	1 year 8 hours 2%		2%	1%	1002 5.34E-07			
D O/P 1 year		8 hours	2%	1%	1002 6.68E-07			
	Logic So	lver Subsys	tem PFD _{avg}	Subtotal:	1.90E-06			
	F	inal Element	t Subsystem					
Valve Assembly	Valve Assembly 1 year 120 hours 10% 10%							
	1.05E-03							
	1.29E-03							
	777							

Safety Instrumented Function Element Failure Rate Data							
Initiators	Model	Data Source	λ _s	λ_{DD}	λ _{DU}		
Pressure Transmitter	Pressure Transmitter Pressure Transmitter		5.00E-07	8.00E-07	5.00E-07		
Logic Solver	Model	Data Source	λ _s	λ_{DD}	λ _{DU}		
Analogue Input Module A I/P		Certificate	1.13E-06	8.86E-07	7.06E-09		
Central Processing Unit	CPU	Certificate	1.31E-06	1.28E-06	4.90E-09		
Digital Output Module	D O/P	Certificate	9.35E-07	8.61E-07	6.81E-09		
Final Elements	Model	Data Source	λ_{s}	λ_{DD}	λ _{ου}		
Solenoid Valve	Solenoid Valve	SINTEF PDS Item 4.3.5	1.90E-06	1.00E-07	6.00E-07		
HIPPS Valve (incl. Actuator) HIPPS Valve		SINTEF PDS Item 4.3.3	2.00E-06	3.00E-07	1.50E-06		
Valve Assembly (sum of above)	Valve Assembly	SINTEF PDS	3.90E-06	4.00E-07	2.10E-06		

Demand Mode of Operation					
SIL Average probability of failure on demand		Target risk reduction			
4	≥10 ⁻⁵ to <10 ⁻⁴	>10,000 to ≤100,000			
3	>10 ⁻⁴ to <10 ⁻³	>1,000 to ≤10,000			
2	≥10 ⁻³ to <10 ⁻²	>100 to ≤1,000	\triangleright		
1	≥10 ⁻² to <10 ^{-⊥}	>10 to ≤100]		

Beta Factor Considerations

Table	D.4 –	Calculation	of β_{int}	or $\beta_{\rm D int}$
-------	-------	-------------	------------------	------------------------

Score (S or S _D)	Corresponding value of $m{eta}_{ ext{int}}$ or $m{eta}_{ ext{D int}}$ for the:				
	Logic subsystem	Sensors or final elements			
120 or above	0,5 %	1 %			
70 to 120	1 %	2 %			
45 to 70	2 %	5%			
Less than 45	5 %	10 %			

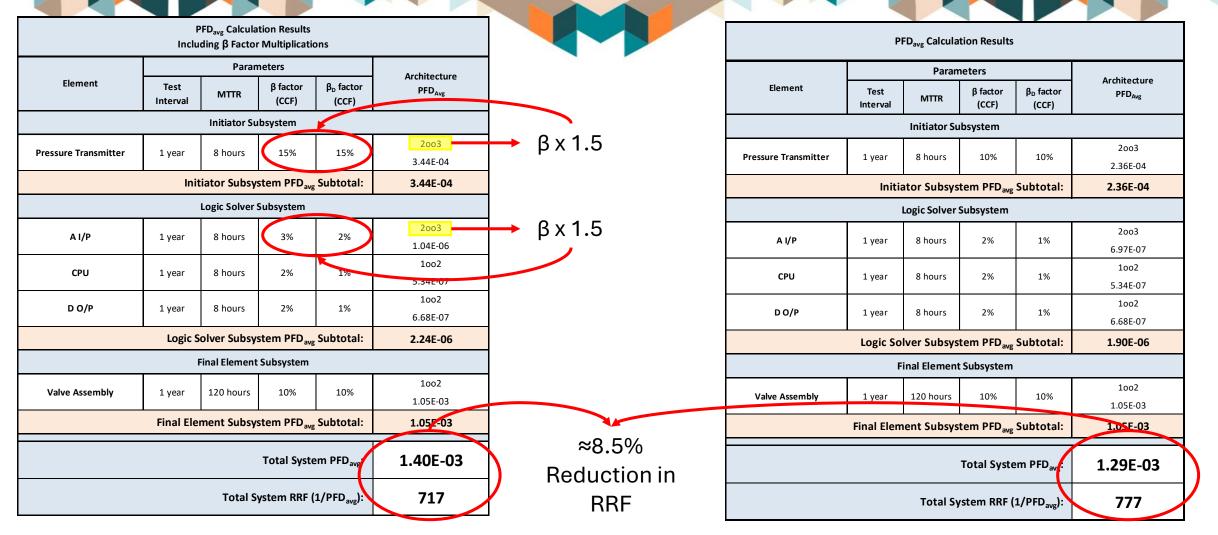
NOTE 1 The maximum levels of $\beta_{\rm D \ int}$ shown in this table are lower than would normally be used, reflecting the use of the techniques specified elsewhere in this standard for the reduction in the probability of systematic failures as a whole, and of common cause failures as a result of this.

NOTE 2 Values of $\beta_{\rm D\ int}$ lower than 0,5 % for the logic subsystem and 1 % for the sensors would be difficult to justify.

Typically we see the most conservative β values used without proper evaluation

However, from IEC 61508-6:2010 Annex D:

The β_{int} derived from Table D.4 is the common cause failure associated with a 1002 system. For other levels of redundancy (MooN) this β_{int} value will change as given in Table D.5 to yield the final value of β .


Beta Factor Considerations

Beta Factor for systems with levels of redundancy greater than 1002 should be changed with multiplication factors given in IEC 61508-6:2010 Annex D, Table D.5

ΜοοΝ		Ν					
		2	3	4	5		
М	1	β_{int}	0,5 $\beta_{\rm int}$	0,3 β_{int}	0,2 $\beta_{\rm int}$		
	2	-	1,5 $eta_{ ext{int}}$	0,6 $\beta_{\rm int}$	0,4 $\beta_{\rm int}$		
	3	-	-	1,75 $\beta_{\rm int}$	0,8 $eta_{\rm int}$		
	4	-	-	-	$2 \beta_{int}$		

Beta Factor Considerations

Other Considerations

IEC 61508-6:2010, Annex B.3 - Reliability block diagram approach is based on some assumptions listed in Clause B.3.1. These include:

B.3.1 Underlying hypothesis

The calculations are based on the following assumptions:

- the channels in a voted group all have the same failure rates and diagnostic coverage;
- for each safety function, there is perfect proof testing and repair (i.e. all failures that remain undetected are detected by the proof test),

IEC 61511-1:2016, Clause 11.9.2 also states:

11.9.2 The calculated failure measure of each SIF due to random failures shall take into account all contributing factors including the following:

 h) the coverage of any periodic proof tests, the associated proof test procedure and the reliability for the proof test facilities and procedure;

Simplified Formulas with PTC

Fortunately, IEC 61508-6:2010 Annex B.3.2.5 includes formulas considering 'non-perfect proof tests'.

These introduce the concept of Proof Test Coverage (PTC).

- PTC is a measure of how effective the proof test is at revealing Undetected Dangerous Failures.
- Undetected Dangerous Failures that can not be revealed by proof testing remain until the equipment is returned to its 'As New' condition.
- A second test interval (T₂) is introduced as the time interval when the equipment is returned to 'As New'.

Simplified Formulas with PTC

The 'channel equivalent mean down time' (t_{CE}) considering PTC is now:

$$t_{CE} = \frac{\lambda_{DU}(PTC)}{\lambda_{D}} \left(\frac{T_{1}}{2} + MRT\right) + \frac{\lambda_{DU}(1 - PTC)}{\lambda_{D}} \left(\frac{T_{2}}{2} + MRT\right) \frac{\lambda_{DD}}{\lambda_{D}} MTTR$$

The 'system equivalent mean down time' (t_{GE}) considering PTC is now:

$$t_{GE} = \frac{\lambda_{DU}(PTC)}{\lambda_{D}} \left(\frac{T_{1}}{3} + MRT\right) + \frac{\lambda_{DU}(1 - PTC)}{\lambda_{D}} \left(\frac{T_{2}}{3} + MRT\right) \frac{\lambda_{DD}}{\lambda_{D}} MTTR$$

Simplified Formulas with PTC

With the simplified PFDavg formulas now:

Subsystem Architecture	IEC 61508-6:2010 Formula
1001	$PFD = (\lambda_{DU} + \lambda_{DD})t_{CE}$
2002	$PFD = 2(\lambda_{DU} + \lambda_{DD})t_{CE}$
1002	$PFD = 2\left((1-\beta_D)\lambda_{DU} + (1-\beta)\lambda_{DU}\right)^2 \cdot tCE \cdot tGE + \beta_D \cdot \lambda_{DD} \cdot MTTR + \beta \cdot \lambda_{DU}(PTC)\left(\frac{T_1}{2} + MRT\right) + \beta \cdot \lambda_{DU}(1-PTC)\left(\frac{T_2}{2} + MRT\right)$
2003	$PFD = 6\left((1-\beta_D)\lambda_{DU} + (1-\beta)\lambda_{DU}\right)^2 \cdot tCE \cdot tGE + \beta_D \cdot \lambda_{DD} \cdot MTTR + \beta \cdot \lambda_{DU}(PTC)\left(\frac{T_1}{2} + MRT\right) + \beta \cdot \lambda_{DU}(1-PTC)\left(\frac{T_2}{2} + MRT\right)$

What PTC to Use?

This depends on the Proof Tests being performed.

For modern, SIL certified initiators (e.g. electronic transmitters) the Safety Manual usually details proof test procedures and the PTC that can be claimed. Usually a good start point but you must consider this is the context of the specific application.

Logic Solver – Usually left at 100% due to the difficulty in testing for the very small dangerous undetected failures. I consider 98% to allow for testing inconsistencies or human errors.

What PTC to Use?

SIF Final Elements (typically valves) do not usually have detailed proof test procedures with corresponding PTC due to the varying applications they are used in.

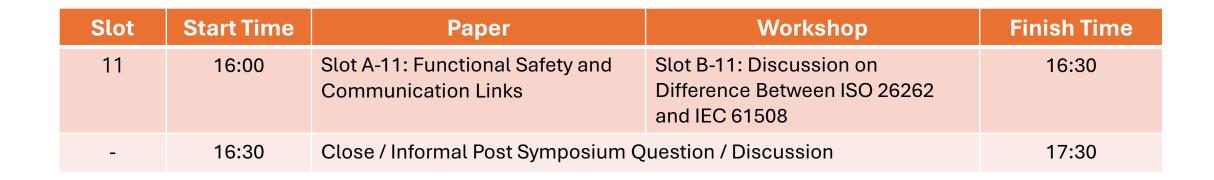
FMEDA + designed proof test procedures

Compare the proof test procedures against failure modes of an equivalent valve from a generic data source such as OREDA.

OREDA Based Valve Test Coverage Analysis - ESDV (Taxonomy 4.4.5.1)						
Failure Mode	Failure %	Proof Test Method	Complete in PT?			
Delayed operation	11	Timed operation	Y			
Failure to close	32	Stroke test	Y			
Internal Leakage	15	Leak test	N			
Structural Deficiency	24	Visual inspection + Stroke Test	Y			
other	18	Assumed visual inspection	Y			
Proof Test Coverage	85 %					

Effect on Overall PFDavg

PFD _{avg} Calculation Results						
Considering PTC and β MooN multiplications						
F laws and		1	Parameters	I		Architecture
Element	Test Interval	MTTR	β factor (CCF)	β _D factor (CCF)	РТС	PFD _{Avg}
		Initia	ator Subsyste	em		
Pressure Transmitter	1 year	8 hours	10%	10%	90%	2003
	т уеаг	8 110013	1078	1078	5078	6.76E-04
		Init	iator Subsy	stem PFD _{avg}	Subtotal:	6.76E-04
		Logic S	Solver Subsys	stem		
A I/P	1 yoar	8 hours	2%	1%	98%	2003
AIJP	1 year	8 110015	270	170	98%	1.21E-06
CPU	1 year	8 hours	2%	1%	98%	1002
5.0	i year	onours	270	1/0	5070	6.12E-07
D O/P	1 year	8 hours	2%	1%	98%	1002
	·					7.76E-07
		Logic S	olver Subsy	stem PFD _{ave}	Subtotal:	2.60E-06
		Final El	ement Subsy	stem		
Valve Assembly	1 year	120 hours	10%	10%	85%	1002
valve Assembly	туса	120 110013	1076	1076	0570	2.71E-03
Final Element Subsystem PFD _{avg} Subtotal:						2.71E-03
Total System PFD _{ave} 3.39E-03						3.39E-03
	Total System RRF (1/PFD _{avg}): 295					


THE 61508 ASSOCIATION

Guidance in Compliance

		PFD _{avg} Calcula ding β Factor		ons	
Element	Parameters				Architosturo
	Test Interval	MTTR	β factor (CCF)	β _D factor (CCF)	Architecture PFD _{Avg}
		Initiator Su	bsystem		
Pressure Transmitter	1 year	8 hours	15%	15%	2003 3.44E-04
Initiator Subsystem PFD _{avg} Subtotal:					3.44E-04
Logic Solver Subsystem					
A I/P	1 year	8 hours	3%	2%	2003 1.04E-06
CPU	1 year	8 hours	2%	1%	1002 5.34E-07
D O/P	1 year	8 hours	2%	1%	1002 6.68E-07
Logic Solver Subsystem PFD _{avg} Subtotal:					2.24E-06
Final Element Subsystem					
Valve Assembly	1 year	120 hours	10%	10%	1002 1.05E-03
Final Element Subsystem PFD _{avg} Subtotal:					1.05E-03
Total System PFD _{avg}					1.40E-03
Total System RRF (1/PFD _{avg}):					717

Presenter:Ian Dolan – Principal ConsultantContact Details:idolan@sellacontrols.comWhat's next....

We would be more than happy to discuss membership with you (<u>https://61508.org/membership/</u>)

THE 61508 ASSOCIATION Guidance in Compliance

https://61508.org / info@61508.org

Date: 07/06/2024 / Slide 23